Datenbestand vom 10. Dezember 2024
Verlag Dr. Hut GmbH Sternstr. 18 80538 München Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
aktualisiert am 10. Dezember 2024
978-3-8439-2348-4, Reihe Ingenieurwissenschaften
Stefan Fechter Compressible multi-phase simulations at extreme conditions using a discontinuous Galerkin scheme
227 Seiten, Dissertation Universität Stuttgart (2015), Softcover, A5
This work provides a contribution to the approximation of compressible multi-phase flows using a high-order discontinuous Galerkin spectral element method. Compressibility effects have to be considered for operating conditions close to the critical point. Important examples for such extreme ambient conditions include fuel injection systems of aeronautical, automotive and rocket engines.
The simulation of compressible multi-phase flows at these ambient conditions imposes high demands on the numerical treatment as well as the numerical method. On the one hand, due to the compressible treatment of both fluid phases and their corresponding numerical methods, especially regarding the numerical resolution of the phase interface. On the other hand, the evaluation of equation of states, that are valid in the vicinity of the critical point, is expensive. As additional challenge are hydrodynamics and thermodynamics coupled closely by the compressible flow equations. This implies that a thermodynamically consistent numerical method has to be chosen.
The building blocks of the described numerical method for compressible multi-phase flows include a compressible flow solver for the bulk phases, a level-set based interface tracking method, a comprehensive description of the equation of state and a model for the interface approximation. The interaction of these parts within the solution algorithm is described and validated in the thesis.