Datenbestand vom 15. November 2024
Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
Impressum Fax: 089 / 66060799
aktualisiert am 15. November 2024
978-3-8439-2367-5, Reihe Materialwissenschaften
Andreas Maximilian Kaus Phosphoolivine als Kathodenmaterialien für Li-Ionen Batterien
172 Seiten, Dissertation Technische Universität Darmstadt (2015), Hardcover, B5
Diese Arbeit beschäftigt sich mit der Synthese und der Charakterisierung von Phosphoolivinen zum Einsatz als Kathodenmaterial in Li-Ionen-Batterien. Hierbei wurde zunächst LiFePO4 als wohl bekanntester Vertreter dieser Materialklasse mit Hilfe von Solvothermalsynthesen hergestellt. Verschiedene organische Säuren dienten als Präkursoren für die Beschichtung der Partikel mit Kohlenstoff, wodurch die Leistungsdichte des Materials wesentlich gesteigert werden konnte. Eine weitere, teils erhebliche, Verbesserung der Leistungsdichten konnte durch einen zweistufigen Beschichtungsprozess erzielt werden. Hierzu wurde das Material zunächst mit Kohlenstoff beschichtet und anschließend kam es zu einer Beschichtung mit Ni0,25Co0,75O bzw. CaF2. Durch eine systematische Variation der Beschichtungskonzentration konnte dieser Einflussfaktor gezielt analysiert werden, um die Leistungsdichte weiter zu optimieren. Neben LiFePO4 war LiCoPO4 ein Kernbestand der vorliegenden Arbeit. Durch die Substitution von Eisen durch Cobalt laufen die Redoxreaktionen nicht länger bei ~ 3,5 V sondern bei ~ 4,8 V ab, welches eine (theoretische) Steigerung der Energiedichte ermöglicht. Das Degradationsverhalten konnte durch eine partielle Substitution des Cobalts mit Eisen bzw. der Verwendung eines Elektrolytzusatzes wesentlich verbessert werden. Das Lade-/Entladeplateau von LiCoPO4 ist im Gegensatz zu LiFePO4 durch zwei Plateaus anstatt eines Plateaus geprägt. Mit Hilfe von in situ XRD, in situ XAS und im besonderen Maße ex situ NMR konnte die auftretende intermediäre Phase erstmalig eindeutig identifiziert werden. Hierauf basierend wurde ein entsprechendes Lade-/Entlademodell vorgeschlagen, welches sich fundamental von dem für LiFePO4 bekannten Modell unterscheidet. Ein weiterer wesentlicher Schwerpunkt dieser Arbeit bestand in dem Aufbau und Inbetriebnahme einer Anlage, die die Synthese von elektrochemisch aktiven Substanzen im kontinuierlichen Prozess unter überkritischen Bedingungen ermöglicht. Verschiedenste Prozessparameter wurden hierzu analysiert und systematisch variiert, um eine optimierte Performance der synthetisierten Materialien zu ermöglichen. LiFePO4, welches mit Hilfe dieser Pilotanlage erfolgreich synthetisiert wurde, konnte neue (arbeitsinterne) Bestwerte für Leistungsdichten aufstellen.