Datenbestand vom 15. November 2024
Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
Impressum Fax: 089 / 66060799
aktualisiert am 15. November 2024
978-3-8439-2512-9, Reihe Ingenieurwissenschaften
Astrid Rother Approach for Improved Signal-Based Fault Diagnosis of Hot Rolling Mills
143 Seiten, Dissertation Universität Duisburg-Essen (2016), Softcover, A5
The approach introduced here is able to detect two specific severe faults, to identify them, to distinguish between four different system states, and to give a prognosis on the system behavior. The presented work investigates the condition monitoring of the complex production process of a hot strip rolling mill. A signal-based fault diagnosis and fault prognosis approach for strip travel is developed. A literature review gives an overview about previous research on related topics. It is shown that the great amount of previous work does not cope with the problems treated in this work and that further investigation is necessary to provide a satisfactory solution. The design of a new signal processing chain is presented and the signal processing steps are detailed. The classification task is differentiated into fault detection, fault identification and fault prognosis. The proposed approach combines five different methods for feature extraction, namely short time Fourier transform, continuous wavelet transform, discrete wavelet transform, Wigner-Ville distribution, and empirical mode decomposition, with two different classification algorithms, namely support vector machine and a variation of cross-correlation, the latter developed in this work. Combinations of these feature extraction and classification methods are applied to rolling force data originating from a hot strip mill.