Datenbestand vom 10. Dezember 2024
Verlag Dr. Hut GmbH Sternstr. 18 80538 München Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
aktualisiert am 10. Dezember 2024
978-3-8439-4871-5, Reihe Anorganische Chemie
Christoph Bohr Electrospun Perovskite Photoabsorber, Electron- and Hole Transport Materials for Flexible Photovoltaics
180 Seiten, Dissertation Universität Köln (2021), Softcover, A5
In recent years, scientists have been exploring and exploiting thin film characteristics of perovskite solar cells for flexible devices. While most of the research still focuses on thin film deposition methods, fibrous geometries are largely neglected.
Electrospinning, as a versatile and up scalable method, enables the formation of highly flexible fiber structures, suitable for optoelectronic applications. An intense screening through common perovskite solar cell components, including hole- (CuI, CuSCN, NiO, PEDOT:PSS) and electron transport materials (TiO2, SnO2, ZnO), as well as photo-absorbing perovskites (MAPbI3, FAPbI3, CsPbI3, (MA)3Bi2I9), has led to a variety of novel composite fibers presented in this thesis.
The targeted structure for a here proposed perovskite solar cell fiber consists of a hole conducting core, a photoabsorbent perovskite interlayer, and an electron conducting shell. Achieved through a core-shell electrospinning technique utilizing multi channeled spinnerets, first realizations of material compositions (PEDOT:PSS/MAPbI3 and CuSCN/MAPbI3) in coaxial geometry were possible and studied in detail.
Since electrospun triaxial fibers are still scarcely reported in literature, the here presented triaxial CuSCN/MaPbI3/Zn(OAc)2 composite fibers pave the way for a realization of electrospun perovskite solar cells.