Datenbestand vom 21. Januar 2025

Impressum Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 21. Januar 2025

ISBN 9783843953955

96,00 € inkl. MwSt, zzgl. Versand


978-3-8439-5395-5, Reihe Organische Chemie

Andreas Hans
Entwicklung eines kooperativen zwitterionischen Lewis- Säure-Acetat/Benzimidazolium-Katalysatorsystems als hochproduktives Werkzeug für direkte asymmetrische 1,4- Additionen

387 Seiten, Dissertation Universität Stuttgart (2023), Hardcover, A5

Zusammenfassung / Abstract

Den effizienten Zugang zu enantiomerenreinen Synthesebausteinen zu ermöglichen, zählt auch heute noch zu den wichtigsten und anspruchsvollsten Aufgaben in der chemischen Forschung. Nachweislich können sich Enantiomere einer Verbindung in ihrer Wirkung zum Teil sehr stark unterscheiden und durch die Interaktion mit Rezeptoren in lebenden Organismen zu unerwarteten deletären Wirkungen führen. Somit stellt vor allem die Pharmaindustrie sehr hohe Ansprüche an die optische Reinheit chiraler Moleküle. Die Entwicklung von effizienten Prozessen ist damit nicht nur aus ökologischer Sicht von zentraler Bedeutung, sondern spielt eine entscheidende Rolle, um die breite und kostengünstige Verfügbarkeit dieser teils lebensnotwendigen Wirkstoffe zu ermöglichen.

In dieser Arbeit wird ein neuartiger Katalysatortyp vorgestellt, der eine außergewöhnliche Effizienz in direkten 1,4-Additionen ermöglicht. Der Katalysator verfügt über eine chirale zwitterionische Struktur, in der ein Acetat-Anion an ein Lewis-acides Kupfer(II)-Zentrum bindet. Als Gegenion dient dem formal negativ geladenen Metallzentrum eine Benzimidazolium-Einheit. Durch Kontrollexperimente wurde die Beteiligung aller drei Funktionalitäten an der katalytischen Aktivierung nachgewiesen. Mit diesem System wurden in der Addition von 1,3-Dicarbonylverbindungen an ein breites Spektrum verschiedener Michael-Akzeptoren hohe Stereoselektivitäten und Produktivitäten erreicht und dabei bisherige Ergebnisse um einen Faktor von bis zu >300 übertroffen. Der polyfunktionelle Katalysator ist in nur vier Stufen mit einer Gesamtausbeute von 96 % zugänglich, stabil während der Katalyse und kann nach der Katalyse rückgewonnen werden. Zudem konnte durch detaillierte kinetische und mechanistische Studien ein tiefer Einblick in Funktionsweise des Katalysators erreicht werden.