Datenbestand vom 15. November 2024

Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 15. November 2024

ISBN 978-3-8439-5331-3

45,00 € inkl. MwSt, zzgl. Versand


978-3-8439-5331-3, Reihe Elektrotechnik

Alexander Schmidt
Multimodal Dictionary-based Ego-Noise Suppression for Acoustic Self-Awareness of Autonomous Systems

206 Seiten, Dissertation Universität Erlangen-Nürnberg (2023), Softcover, A5

Zusammenfassung / Abstract

In this thesis, ego-noise suppression for autonomous systems is considered. It is proposed to model ego-noise using so-called dictionaries which will turn out to be especially suited to represent the spatial and spectral characteristics of ego-noise. Specifically, semi-supervised single- and multichannel nonnegative matrix factorization (NMF) are introduced for ego-noise suppression. Furthermore, it will be shown that ego-noise suppression can benefit significantly if motor data, i.e., angle information collected by proprioceptors of joints and motors, is included in the suppression algorithms.