Datenbestand vom 10. Dezember 2024

Impressum Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 10. Dezember 2024

ISBN 978-3-8439-5371-9

39,00 € inkl. MwSt, zzgl. Versand


978-3-8439-5371-9, Reihe Ingenieurwissenschaften

Michael Haderlein
Numerical Investigation of Particle Formation Processes

163 Seiten, Dissertation Universität Erlangen-Nürnberg (2022), Softcover, A5

Zusammenfassung / Abstract

Die vorliegende Arbeit betrachtet neben der eigentlichen Partikelbildung zusätzliche vorausgehende beziehungsweise parallel stattfindende Unterprozesse, die für eine prädiktive Beschreibung der finalen Partikelgrößenverteilung entscheidend sein können. Zur Modellierung von Mischprozessen wird ein Mischmodell entwickelt, das auf einem etablierten Kompartimentmischmodell basiert. Die Evaluierung des neuen Mischmodells zeigt eine sehr gute Übereinstimmung zu Messdaten eines T-Mischers. Während der Partikelbildung ständig stattfindende hydrochemische Prozesse wie die Bildung von Komplexen werden auf Basis entsprechender Gleichgewichtskonstanten mit einem Gleichungssystem beschrieben. Zur Lösung wird ein hocheffizientes Verfahren entwickelt, das mit Hilfe der zugehörigen Jacobi-Matrix auch bei einer großen Anzahl betrachteter Komponenten schnell konvergiert und somit ohne Effizienzeinbußen in die Beschreibung des Gesamtsystems integriert werden kann. Die Phasentransformation wird mit Hilfe von Populationsbilanzen beschrieben. Bei Stoffsystemen, die durch Reifungsprozesse geprägt sind, ist eine hohe Auflösung der Partikelgrößenverteilung über die gesamte Partikelgrößenskala notwendig, da sonst numerische Instabilitäten zu hohem Rechenaufwand führen, weshalb ein Verfahren basierend auf Finiten-Volumen-Methoden herangezogen wird. Bei Fällungsprozessen, in denen primäre Feststoffbildung wie Keimbildung und Wachstum dominieren, ist eine entsprechend hohe Auflösung nicht notwendig, weshalb hierfür auf eine hocheffiziente Momentenmethode zurückgegriffen wird. Die mögliche Koexistenz mehrerer Feststoffphasen wird hierbei in den resultierenden Gleichungen stets berücksichtigt.