Datenbestand vom 15. November 2024
Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
Impressum Fax: 089 / 66060799
aktualisiert am 15. November 2024
978-3-8439-4627-8, Reihe Fahrzeugtechnik
Peter Wolf Maschinelles Lernen in der Onboard-Fahrzeugdiagnostik
195 Seiten, Dissertation Technische Universität Dresden (2020), Softcover, A5
Eine immer höhere Anzahl an E/E-Komponenten, flexible Funktionsangebote und eine zunehmende Konnektivität führen zu einer stetigen Komplexitätssteigerung aktueller Fahrzeuge. Die zuverlässige Fehlererkennung im Fahrzeug anhand aktueller Mechanismen stößt in solch komplexen Systemen vermehrt an ihre Grenzen. Dabei produzieren heutige Fahrzeuge große Mengen an Daten, die eine alternative Basis zur Entwicklung diagnostischer Modelle bieten.
In dieser Arbeit wird daher ein datengetriebenes Konzept zur Onboard-Fahrzeugdiagnostik entwickelt, welches aus einer autarken, modularen Onboard-Diagnostik-Einheit besteht und von externen Rechenzentren unterstützt wird. Dabei werden Diagnostik-Modelle und dazugehörige Bausteine in Rechenzentren erstellt und anschließend an die Onboard-Diagnostik-Einheit übertragen. Die Modelle werden auf internen Fahrzeugdaten hoher Dimension und Frequenz trainiert und automatisiert erstellt.
Die Diagnostik-Modelle basieren auf Methoden des maschinellen Lernens, wobei zwei Lernfälle berücksichtigt werden. Zum einen wird ein überwachtes Lernszenario betrachtet, in welchem Convolutional und Long Short-term Memory neuronale Netze zur Fehlererkennung im Fahrzeug kombiniert werden. Zum anderen wird ein unüberwachtes Lernszenario behandelt, wobei Deep Embedded Clustering auf multivariate Zeitserien hoher Frequenz übertragen und erweitert wird. Die Lauffähigkeit im Fahrzeug wird durch die entwickelte modulare Onboard-Diagnostik-Einheit realisiert.
Die erarbeiteten Modelle und die Onboard-Diagnostik-Einheit werden anhand zweier realer Szenarien der Vorentflammungserkennung in hochaufgeladenen Ottomotoren evaluiert. Zusätzlich werden bestehende Infrastrukturen im und außerhalb des Fahrzeuges verwendet, um das entwickelte Konzept in einer Serienumgebung umzusetzen. Die Ergebnisse zeigen, dass die erstellten Modelle und die Onboard-Diagnostik-Einheit zur Diagnostik in multivariaten Zeitserien hoher Dimension und Frequenz auf Seriensteuergeräten befähigen.