Datenbestand vom 27. Dezember 2024

Impressum Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 27. Dezember 2024

ISBN 978-3-8439-3822-8

84,00 € inkl. MwSt, zzgl. Versand


978-3-8439-3822-8, Reihe Mathematik

Max Kontak
Novel algorithms of greedy-type for probability density estimation as well as linear and nonlinear inverse problems

207 Seiten, Dissertation Universität Siegen (2018), Softcover, A5

Zusammenfassung / Abstract

Greedy-Algorithmen sind oft genutzte Methoden zur Generierung von sogenannten sparsen Approximationen. Funktionen auf diese Art zu approximieren ist aus verschiedenen Gründen vorteilhaft. Deshalb entwickeln wir Greedy-Algorithmen für zwei verschiedene Problemklassen, die Schätzung von Wahrscheinlichkeitsdichten einerseits und inverse Probleme andererseits.

Die Entwicklung eines Greedy-Algorithmus für die Dichteschätzung ist motiviert durch die Notwendigkeit, einen Simulationsalgorithmus für sogenannte Vliesstoffe zu implementieren, einem speziellen Typ technischer Textilien, die oft in industriellen Anwendungen verwendet werden. Wir werden solch einen Simulationsalgorithmus vorstellen, der eine Schätzung der Richtungsverteilung in einem Vliesstoff benötigt. Die Richtungen der Fäden in einem echten Vliesstoff können mit Computertomographen analysiert werden. Dies liefert Millionen von Datenpunkten. Benutzen wir die Wahrscheinlichkeitsdichte, die durch den neu entwickelten Greedy-Algorithmus generiert wird, so reduziert sich die Rechenzeit des Simulationsalgorithmus von 80 Tagen auf 150 Minuten um einen Faktor von 750 im Vergleich zur Verwendung von Kerndichteschätzern, einer Standardmethode für die Dichteschätzung.

Für inverse Probleme entwickeln wir zwei Verallgemeinerungen des Regularized Functional Matching Pursuit (RFMP)-Algorithmus, welcher ein Greedy-Algorithmus für lineare inverse Probleme ist. Für die erste Verallgemeinerung, die wir RWFMP nennen, legen wir verbesserte theoretische Ergebnisse im Vergleich zum RFMP vor. Außerdem kann durch den RWFMP die Rechenzeit des RFMP auf ein Zehntel reduziert werden, ohne viel Genauigkeit zu verlieren. Die zweite Verallgemeinerung ist ein RFMP für nichtlineare inverse Probleme. Wir wenden diesen Algorithmus auf das nichtlineare inverse Gravimetrieproblem an, welches sich mit der Bestimmung von Strukturen im Innern eines Planeten aus Gravitationsdaten befasst. Wir erhalten sehr gute numerische Resultate, betreffend sowohl die Genauigkeit und die sparsity, als auch die Interpretierbarkeit des Ergebnisses.