Datenbestand vom 15. November 2024

Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 15. November 2024

ISBN 978-3-8439-5136-4

72,00 € inkl. MwSt, zzgl. Versand


978-3-8439-5136-4, Reihe Informatik

Andreas Schmidt
Propagations-Netze im Kontext etablierter probabilistischer Modelle

249 Seiten, Dissertation Universität Koblenz-Landau (2021), Softcover, A5

Zusammenfassung / Abstract

Diese Dissertation behandelt die Unifizierung verschiedener (etablierter) probabilistischer Modellklassen auf die gemeinsame, umfassende und funktional überdeckende Oberklasse Wahrscheinlichkeits-Propagations-Netze (PPNs). Es wird gezeigt, dass mit dieser höheren Petri-Netz-Klasse eine einheitliche, exakte Möglichkeit zur Modellierung, Analyse und Evaluation von probabilistischen Problemen verschiedener Domänen vorliegt. So werden Methoden vorgestellt, um Modelle der gewählten Klassen unter Erhaltung der Aussagekraft und Genauigkeit unter Erzeugung eines Mehrwertes in PPNs zu überführen; es wird dargestellt, wie entsprechende Problemstellungen anhand von PPNs untersucht werden können. Die unifizierten Modellklassen sind kausale AND/OR/NOT-Graphen, dynamische Bayes’sche Netze, dynamische Fehlerbäume und Influenzdiagramme. Weiterhin werden zwei Erweiterungen der PPNs definiert – die höheren Netzklassen temporale PPNs (TPPNs) und Utility/PPNs (U/PPNs). Die Klasse TPPNs ermöglicht die Nutzung von minimalen, gefalteten PPNs, um geeignete, zeitbezogene Sachverhalte, welche mehrere Zeitscheiben erfordern, zu modellieren und zu analysieren; die Klasse U/PPNs erlaubt einen exakten Umgang mit Utilities basierend auf Entscheidungen, unsicherem Wissen und Evidenzen. So kann der optimale erwartete Nutzen eines modellierten, zu evaluierenden Sachverhaltes genau ermittelt und sich eventuell ergebende Maßnahmen sicher begründet werden. Verglichen mit den zuvor genannten zugrundeliegenden Modellklassen wird die Genauigkeit, die Nutzbarkeit und das Verständnis modellierter Sachverhalte erhöht und verbessert.